SILGURIINSTITUTE OF TRCHNOLOGY
evaluation proct durt for chemistay Lail (CH.191/CH:2911

CATEGORIES		Excellent: 5	Very Good: 4	Good: 3	Salr: 2	Unsatisfactory 1
Attendance		fonctual in the lak and experiment is completed within the sperific time.	Late in the lab thet experiment is rompleteil within the specific time	tate In the lab but experfatent is not completed within the surecic lime	I vpariment is tone in extla class due to abseficen on ashithend dows	trieriment is not done in the ertia dass also.
Lab Technique	tab performances	Demonstrates very food inowledge of toth theory and expetimental procedure.	Demonstrater gond anowlefite of thoth theary and experimental procetiure.	Dembontrates average knowiditye of both timory anchexpertmental procedure		Cemin+istrates relurtanane: of either thenary of experimental procedure.
	Data accumulation	Meswurements, skills or techniques are very good and acculate	Measurements, shils or techniques are good and fainly accurate.	Measurements, sills ar lechniques are average and laitly accurate.	Measurmenents, shils of techonimurs are poor and inaccurate	Measurements, bkills of technilques are inadequate and insecurate.
	Data analysis \& Caiculation	Data is clearly represented and step wise calculations ate prespented. If necessary. graph is plottest with proper batieling alang with units	Data is clearly tepresented but step wise recersaty calculations ste missing I' necessarv, graph is alotteil with proper labeling	Data la deaty repowented and step wise necessary calculations are missing if necessaty, erant is plotted without proper balieling	fither ifata are incomplete" or step wise calculations are miksing ot necessary graph is not correctiy scaled and 1abieled	Data, calculations and graph ara incomplete.
	Interaction with Group	Exselent team work with propet attitude	Very good team work with proper attitude	Good team work with proper sttitude	Minimum team work with lack of proper attitude	No team work and lack of proper attitude
\cdots	Timely submission	Writing Fair lab copy properly and submit before performing the next practical.	Writing fair Lab copy propetly and late submission.	Writing fair Lab copy partially and submit before performing the nert practical.	Writing fair Lab copy partasly and late submission	incomplete Lab copy and irregular submission
A STUDENT HAVE TO COMPLETE EIGHT EXPERIMENTS, EACH PRACTICAL WILL BE OUT OF 30 MARKS.						
EVALUATION PROCEDURE OF A STUDENT FOR CHEMISTRY LAB [CH-191/291] ON THE SCALE OF 40 [i.c (GRAND TOTAL / 240) ${ }^{*} 40$]						

CONDUETOMERIE TITRATION
Determination of strength of a givers solution of ACL by titration against a standard solution of NaOH .
Principle:- When an acid is added to a base, there is a reaction between the hydronicum ions $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and the hydroxyl ions $\left(\mathrm{OH}^{-}\right)$. This can be represented by the following ionic reaction:

$$
\left.\mathrm{H}_{3} \mathrm{O}^{+} \text {(aqueous) }\right) \mathrm{OH}^{-} \text {(aqueous) } \longrightarrow 2 \mathrm{H}_{2} \mathrm{O} \text { (liquid) }
$$

When the cumount of base increases, the conductance will be lowered as the result of the disappearance of hydroneum ions $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$. (The hydronium ions $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$have a high malar conductivity while the cations from the base have a much lower malar conductixity. When the hydroneum ions $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$have all been neat ralized, the increase in excess base concentration will result in a sudden increase in the conductivity of the solution. This phenomenon is dee to the high molar conductivity of hydroxyl ions $\left(\mathrm{OH}^{-}\right)$.
Apparatus:- Chemical balance, weighing battle, volumetric flask, Burette, Erlenmeyer flask, pipettes, Conductivity Bridge, conductivity cell.

Reagents:- Oxalic acid, $(\mathrm{N} / 5) \mathrm{NaOH}$ solution, (N/2O) Hel solution, Phenolphthalein indicator
Procedure:-

1. Preparation of 250 mL standard $N / 10$ oxalic acid $(+1)_{2} \mathrm{Cu}_{4} \cdot 2+\mathrm{H}_{2}$) Solution: About 1.575 g oxalic acid is coeighed out accurately in 250 ml volumetric flask and dissolved in distilled water.
2. Standardization of supplied NaOH solution with the standard Oxalic acid solution:
25 ml NaOH solution is pipetted out in a 250 ml conical flask. Two drops of phenolphthalein indicators is added to it and the solution become pink. The solution is titrated against standard oxalic acid solution and at the end point the solution become. colourless.
3. Titration of NaOH solution by standard HCL solution enductometrically: 25 mL given HCL solution is pipetted out in a 250 mL beaker and 125 mL deionésed water is added to it. conductivity cell is placed in a beaker so that the electrodes are completely immersed in the acid solution. conductance of the solution is measured and noted down. Initially 10 drops and then 5 drops (near the end points of NaOH solution are added and conductance is measured after each addition.

Plot the 'conductance' against corpespond 'titre values', draw the straight lines and obtain the point of equivalence at intersection.
Results and calculation:--
Table 1:-Preparation of standard $0.1(N)$ oxalic acid stu

Initial weight $\left(W_{1}\right) \mathrm{g}$	Final weight $\left(W_{2}\right) \mathrm{g}$	Weight taken $\left(w_{1}-\omega_{2}\right) \mathrm{g}$
$20+20+2+2+200 \mathrm{mg}+50 \mathrm{mg}$	$20+20+2+1+200 \mathrm{mg}+65 \mathrm{mg}$	
$+100 \mathrm{mg}+40=44.840 \mathrm{~g}$	$=43.265 \mathrm{~g}$	1.575 g

\qquad

Strength of NaOH solution,

$$
\begin{array}{rlrl}
S_{2} & =V_{1} * S_{1} / V_{2}(\mathrm{~N}) & & V_{1}=46.33 \mathrm{ml} \\
& =\frac{46.33 \times 0.1}{25} & & S_{1}=0.1(\mathrm{~N}) \\
& =0.185 & & y_{S}=25 \mathrm{ml} \\
& S_{2}=?
\end{array}
$$

Strength of oxalic acid solution $\left(S_{1}\right)=\left(W_{1}-W_{2}\right) / 1.575 * 0.1(\mathrm{~N})$
Table 2:- Standardization of NaOH solution.

Strength of NaOH solution $\left(S_{2}\right)=V_{1} * S_{1} / V_{2}(N)$

$$
=0.185(N)
$$

Table 3:- Titration of NaOH solution by standard HCl
Solution conductometrically.
Volume of given acid solution $\left(\gamma_{3}\right)=25 \mathrm{ml}$

Strength of Hel solution

$$
S_{3}=\frac{V_{4} * S_{2}}{V_{3}}
$$

There,

$$
=\frac{4.72 \times 0.0185}{25}
$$

$$
=0.034(\mathrm{~N})
$$

$$
\begin{aligned}
& V_{4}=4.72 \mathrm{ml} \\
& S_{2}=0.185(\mathrm{~N}) \\
& V_{3}=25 \mathrm{ml} \\
& S_{3}=?
\end{aligned}
$$

$$
\text { String th of the solution }\left(S_{3}\right)=
$$

$V_{4}^{*} \mathrm{~S}_{2} / V_{3}(\mathrm{~N})$

$$
=0.034(N)
$$

CATEGORIES		Excellent: 5	Very Good: 4	Good: 3	Fair: 2	Unsatisfactory: 1
Attendance		Punctual in the lat and experiment is completed within the specific time.	Late in the lab but experiment is completed within the specific time	Late in the lata but experiment is not completed within the specific time.	Experiment is done in extra class due to absence on assigned days.	Experiment is not done in the estra class also.
	Lab performances	Demonstrates very good knowledge of both theory and experimental procedure	Demonstrates good hnawiedge of both theory and experimental procedure.	Demonstrates average knowledge of both theory and experimental procedure.	Demonstrates poor Idea of theory and experimental procedure.	Demonstrates reluctanance of either theory or experimental procedure.
	Data accumulation	Measurements, shills or techniques are very good and acrurate.	procedure. Measurpments, skills or techniques are good and fairty accurate.	Measurements, skills or techniques are average and fairly accurate	Measurements, skills or techniques are poor and inacturate.	Measurements, shills or techniques are inadequate and inaccurate
	Data analysis \& Calculation	Data is clearly represented and step wise calculations are presented, ti necessary. graph is plotted with proper labelling along with units.	Data iscleaty represented but step wise necessary calculations ate missing If necessary, graph is plotted whth proper latelling.	Data is clearty represented and step wise necessary calculations are missing. If necessary, graph is plotted without proper labelling.	Either data are incomplete or step wise calcutations are missing or necessary graph is not correctly scaled and lateled.	Data, calculations and graph are incomplete.
	Interaction with Group	Excrilent team work with proper attitude	Very good team work with proper attitude	Good team work with proper attitude	Minimum team work with lack of proper artitude	No tearn work and lack of proper attitude
	Timely submission	Writing Fair Lab copy propetly and submit before performing the next practical.	Writing fair tab copy property and late submission.	Writing fair lab copy partially and submit before performing the next practical.	Writing fair Lab copy partially and late submission.	Incomplete Lab copy and irregular submission.
A STUDENT HAVE TO COMPLETE EIGHT EXPERIMENTS, EACH PRACTICAL WILL BE OUT OF 30 MARKS.						
EVALUATION PROCEDURE OF A STUDENT FOR CHEMISTRY LAB [CH-191/291] ON THE SCALE OF 40 [1.e (GRAND TOTAL/ 240) 40]						

SILIGURI INSTITUTE OF TECHNOLOGY

\qquad
CONDUCTOMETRIC TITRATION
Determination of strength of a given solution of HCl by titration against a standard solution of NaOH .

Principle:
When an acid is added to a base, there is a reaction between the hydronium ions $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and the hydroxy) ions $\left(\mathrm{OH}^{-}\right)$. This can be represented by the following ionic reaction:

$$
\mathrm{H}_{3} \mathrm{O}^{+} \text {(aqueous) }+\mathrm{OH}^{-} \text {(aqueous) } \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \text { (liquid) }
$$

When the amount of base increases, the conductance will be lowered as the result of the disappearance of hydronium ions $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$. (The hydroniam tons $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$have a higher molar conductivity while the cations from the base have a much lower molar conductivity). When the hydronium ions $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$have all been neutralized, the increase in excess base concentration will result in a sudden increase in the conductivity of the solution. This phenomenon is due to the high molar conductivity of hydroxyl ions $\left(\mathrm{OH}^{-}\right)$.

Apparatus:
chemical balance, Neighing bottle, volumetric flask, Burette, Erlénmeyer flask, Pipettes, Conductivity Bridge, conductivity cell.

Reagents:
Oxalicacid, $(\mathrm{N} / 5) \mathrm{NaOH}$ solution, $(\mathrm{N} / 20) \mathrm{HCl}$ solution, Phenolphthalein indicator.
\qquad

Procedure:

1. Preparation of 250 ml standard $\mathrm{N} / 10$ oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}, 2 \mathrm{H}_{2} \mathrm{O}\right)$ solution:

About 1.575 g oxalic acid is weighed out accurately in 250 ml volumetric flask and dissolved in distilled water.
2. Standardization of supplied NaOH solution with the standard oxalic acid solution:

25 ml NaOH solution is pipetted out in a 250 ml conical flask. Two drops of Phenolphthalein indicator is added to it and the solution become pink. The solution is titrated against standard oxalic acid solution and at the end point the solution become colourless.
3. Titration of NaOH solution by standard HCl solution conductometrically:

25 ml given HCl solution is pipetted out in a 250 ml beaker and 125 ml deionised water is added to it. Conductivity cell is placed in a beaker so that the electrodes are completely immersed in the acid solution. Conductance of the solution is measured and noted down. Initially 10 drops and then 5 drops (near the end point) of NaOH solution are added and conductance is meas cured after each addition.

Plot the 'conductance' against correspond 'titre values', draw the straight lines and obtain the point of equivalence at intersection.
\qquad

Results and Calculation:
Table 1: Preparation of standard $0.1(\mathrm{~N})$ oxalic acid solution.

$$
\begin{aligned}
& \begin{aligned}
\text { Strength of oxalic acid solution }\left(S_{1}\right) & =\frac{\left(W_{1}-W_{2}\right)}{1.575} \times 0.1(\mathrm{~N}) \\
& =\frac{2.178}{1.575} \times 0.1=0.138(\mathrm{~N})
\end{aligned}
\end{aligned}
$$

Table 2: Standardization of NaOH solution.

$$
\text { Strength of } \begin{aligned}
\mathrm{NaOH} \text { solution }\left(S_{2}\right) & =\frac{V_{1} X_{20} S_{1}}{V_{2}}(\mathrm{~N}) \\
& =\frac{32.63 \times 0.138}{25}=0.180(\mathrm{~N})
\end{aligned}
$$

\qquad
Data $22108 / 19$ Teacher's Signature

Exp. No. 07

24	115
75.	120
26.	125
27.	130
28	135
29.	110
30.	145

Page No. 5

2.16
2.57
2.68
2.81
2.95
3.09
3.24

No of drops of Nail solution at equivalence point (x) (from plot) $=102$ drops

$$
\begin{aligned}
15 \text { drops } & =1 \mathrm{ml} \\
1 \text { drop } & =1 / 1 \mathrm{ml} \\
102 \text { drops } & =\frac{1}{15} \times 102 \\
\left(V_{4}\right) & =6.8 \mathrm{ml}
\end{aligned}
$$

B.Tech. 1" Year, $2^{\text {ma }}$ Sem, 2019

Phusics-I Laboratory (BS-PII-291) Evaluation Rubrics

A student has to complete ten experiments within the semester. In each week, student will be allowed to do only one experiment as per his her allotment. This Internal evaluation of Physics-1 laborafory will be done in a total of 100 marks. The diseribution and etplanation of the marks are as follow:

Attendance: 5 Marks

The evaluation of attendance will be done at the end of the semester based on regularity and puncfuality of the sfudent.
Lab Technique:
The lab technique for each experiment in each week will be evaluated as per given rubrics.

Categories	Excellent =5	Good=4	Fair=3	Marginal -2	Unsatisfactory - 1
Interaction with Group	Very good participation through shared participation and respect for others.	Good participation through shared participation and respect for others.	Somewhat participation appears interested but talks over team mates.	Minimal participation; Shows Iittle interest.	No participation; sits on the sidelines with no Interaction.
Laboratory Viva	Demonstrates good knowiedge of both theory and experimental procedure.	Demonstrates good knowledge of either theory or experimental procedure.	Has a fair idea of both theory and experimental procedure?	Has some idea of experimental procedure.	Has no Idea of the experiment at all.
Data Accumulation	Measurements, skills or techniques are good and accurate.	Measurements, skills or techniques are good.	Measurements, skills or techniques are somewhat inaccurate.	Demonstrate incompetence in measurements, skills or techniques.	Measurements, skills or techniques are incomplete and inaccurate.

Laboratory Report:
The lab report for each experiment in a week will be evaluated as per given rubrics.

Categories	Excellent $=5$	Good=4	Fair=3	Marginal =2	Unsatisfactory $=1$
Representation	The theory, apparatus, procedure is clearly stated along with proper sketch of the experimental setup.	Any three within theory, apparatus, procedure and proper sketch of the experimental setup is present.	Any two within theory, apparatus, procedure and proper sketh of the experimental setup is present.	Any three within theory, apparatus, procedüre and proper sketch of the experimental setup is present and incomplete.	Any two within theory; apparatus, procedure and proper sketch of the-experimental setup is present -and incomplete.
Data Analysis nd Calculation	Data is clearly represented and step wise necessary calculations are presented. If necessary, graph is plotted with -proper labeling along with units.	Data is clearly represented but step wise necessary calculations are missing. If necessāry, graph is plotted with propér labéling along with घnits.	Data is clearly represented and step wise necessary calculations are présented. If necessary, graph is plotted with proper labeling büt unitsare missing	Either data are incomplete or step wise calculations_are missing or necéssary graph is not correctly scaled and $=$ labeled.	Datá, calculation and graph are incompleté.
discussi	Inclū̃e error calculation- (accuracy of results) and a clear discusion of the results,	Error cálculation: is grossly inaccurate buta clēar discussion. of the results is present.	Eithereerror calculation 0 . discussion of the results is missing. \qquad	Errotealculation is grossly ināccurate or discussion of the resultşiş missing.	Nēither error calculation nor discussion of the results is included:
	Gets the completed note book with proper - index corrected before performing the next practical	Gets the completed notebookwithout proper index corrected bēfore performing the next practical.	Gets the completed note book with proper index orrected within wo weeks ano frome The experiment	More or less	

Thus total evaluating marks is 350 for ten experiments.

Bitectul" Year, 2" Sem. 2019

Name of the Student: Durst $\begin{gathered}\text { Fath } \\ \text { Na th }\end{gathered}$
Stream: E.E
Roll No.: 27
Sub-Group: 6

- Total marks obtained in laboratory class (out or 95), $A=\frac{1 . . .}{}(m) \times 95=1$
- Marks obtained in attendance (onto 5) $B=0,5$
- Total Internal marks obtained including attendance (out of 100$),(A+B)$

mark:

of attendance will be done at the end of the semester based on regularity, punctuality of the student

15 marks

que for each experiment, each week, will be evaluated as in the rubrics given below

Excellent =5	Good=4	Fair=3	Marginal = 2	
Very good participation through shared participation and respect for others.	Good participation through shared participation and respect for others.	Somewhat participation appears interested but talks over team mates.	Minimal partic pation Show hiftle interest	Unsatisfae participation the sudelines
Demonstrates good knowledge of both theory ind experimental procedure.	Demonstrates good knowledge of either theory or experimental procedure	Has a fair idea of both theory and experimental procedure	Has some idea of expermental procedure	Has no dea experment
Measurements. skills or techniques are good and accurate	Measurements. skills or techniques are good	Measurements, skills or techniques are somewhat inaccurate	Demonstrate incompitance in measurements is llo or techniques	Мeaxureme lectinnaus and ?a

ents, thus the total evaluating marks is 90 . The final evaluation of lab technique will be done in 15 marks

marks

or each experiment, each week, will be evaluated as in the rubrics given below

$$
\text { Fxcellent }=5
$$

Ihe theors apparatus. procedurs inclearls stated along with proper shetch of the experimental setup.

Data is clearly represented and step wise necessary calculations are presented. If necessary. graph is plotted with proper Aabeling along with units.

(iood $=-4$

Any three whthen theory apparatlas, procedure .and proper skeich of the experimental selup in present

Data is clearly represented but step wise necessary calculations are inissing. It necessary. graph is plotted with proper labeling along with units.

Fair=3

Anv two within theors apparatus, procedure and proper sketch of the experimental setup is present

Data is clearly represented and slep wise necessary calculations are presented It necewary. graph is plotted with proper labeling but units are missing

Varginal - :

Ans threc withon theory apparatm procitary whe proper isetin it the
čDerimental vetup \sim po wet and incomplete
Fither data are incumpiete vlep wise caluwalons are
imisvink or hecevaary yr apl
not corteotiv valiod ant labeled

Record Sheet

Name: Simantika Sola
Roll No: 34

Stream: EE
Group:

That Masks obtained in Attendance (5) at the end of the semester:

Assessment sheet li Business Caid presentation

language Laboratory (HM-HU2.21) Assessmentul: Public speaking (How (CIVLL- $2^{\text {m }}$ semester 2019)

